/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

A bit of Motivation and
some hints

/v Why TDD?

AARHUS UNIVERSITET
« “TDD seems very slow, | need to write all those tests
which takes a lot of time, instead of writing production

code?”
* Yeah... But — your productivity keeps nearly constant !

Productivity = ‘Correct lines of code per hour’

With tests

Without tests

CS@AU Henrik Baerbak Christensen

/v Exercise

AARHUS UNIVERSITET

* You are employed in a company with little Automated
Test tradition... Manual tests...

« What happens here () ? And what happens next?

Productivity = ‘Correct lines of code per hour’

Without tests

CS@AU Henrik Baerbak Christensen 3

VeV When TDD?

AARHUS UNIVERSITET

Do | always do TDD?

— No! Hacking together a quick Python script to compute SWEA
delivery deadlines, or other ‘one-time-tasks’, | just develop using
‘run-and-see-it-work’ (but | always “Take Small Steps’)

» The first running code is always “Hello my new script” printed!
« Testing and TDD is for larger systems with a longer time
period...
— Sometimes ‘one-time-prototypes’ become real systems

« WarStory:
— That quick-and-dirty prototype, that actually worked...
— Had to spend 14 days putting in tests to get productivity up again!

/v Why Pair Programming?

AARHUS UNIVERSITET

« Why waste time on two people doing one person’s
coding?

« SWEA motivation

— Get everybody to the keyboard — training is vital

« XP motivation
— Knowledge sharing and mutual learning
— Keep quality high

/v

AARHUS UNIVERSITET

Mandatory Notes

/v Evident Tests

AARHUS UNIVERSITET
« The ‘GWT comments help a lot, | find...

Last year TA's wanted some guidance so | pulled out
“TestAlphaStone’

ETest

pubklic wvoid 5ﬁnuldREfillHanaWﬁenTurnEeginsi] {
. Given Findus plays Tres
Card tres = game.gEtCaIdInﬂand(PlayEI.FINDUS, oy :
assertTﬁatigaHE playCard (Player .FINDUS, tres), is(Status.0K)):

game . EﬁdTJI’iE]r
J Then mana stays at 0
asserthatigaHE getHero (Player.FINDUS) .getManal(), i=s(0)): 1-2-2022

When turn gets back to Finduas '”
gaﬂe endTurn ()

Then mana is back to 3 (Alpha spec)
ESSEItTﬁEt(gEHE getHero (Player .FINDUS) .getMana (), is(3)): 14.20: hand and field in place; toggle player in turn; initial fielding

Began development of API and TDD of AlphaStone.
Began 13.00

15.30: Hero introduced, play Card mana cost deducted from Hero; no
play of cards if not enough mana.

16.15: Attack introduced, health reductions, card removal, validation
of active card (and <? extends Card> changes in API)

Total: 4.5 h

CS@AU Henrik Baerbak Christensen 7

/v Incorrect Assumptions

AARHUS UNIVERSITET
* Producing code means making mistakes, also in the test!

— t Defects often arise when ¥ou have incorrect assumgtions l

« Step 1: Quickly Write a Test

— Given game with Dos, Cuatro in Findus’ hand
 And Dos is at index 0O in the hand

— When | play Dos, Then the field has 3 cards (Uno+Tres already there)
« Step 2: Run all tests to see the new one falil

— “But the error reported is some weird null pointer / index out of range
error?”

15 min later: Aah, Dos had already been played !!!

CS@AU Henrik Baerbak Christensen 8

/v Take Small Steps

AARHUS UNIVERSITET

« Small steps: Ensure your assumptions are correct
— Verify that the hand is actually Dos + Cuatro

* Helper methods to ‘'dump complete game state’

— TestHelper.printGameState(game); %J

— Remove the ‘printing’ once your tests runs correctly!

Run: TestBetaStone.shouldMotDeclarewinnerAfterSRounds...
P v@ 121 = T CNTS -] + Tests passed: 1 -91ms

v TestBetastone (hotstone solution.variant 921 ms fusr/1ib/jvm/java-1.11.08-openjdk-amdé4/bin/java ...
£ shouldMotDeclareWinnerAfterSRounds === Game State Print ===

dles Player in turn: FINDUS, Turn number: 108
public void shouldNotDeclareWinnerAfter5RoundsWithNoAttacks() { --- Player: FINDUS ---

- e | Hero (Baby) Mana: &, Health: 19

- is NO wi s no ottocks Deck size: ©

assertThat (game.getWinner(), is(nullValuve())); Hand[8:{Siete: (3, 2, 4), Act: F} 1:{Seis: (2, 1, 3), A

TestHelper.printGameState(game); Field[]
} \ --- Player: PEDDERSEN ---

== Hero (Baby) Manma: 5, Health: 19

[J— . g——— -~

TestHelper.odvanceGaomeNRounds(game, roundCount: §);

VeV What is TDD?7?7?

AARHUS UNIVERSITET

« Traditional tests = Quality Assurance Technique

— Success:
» Tests are constructed to catch defects

 TDD tests = Implementation Technique
— Success: test cases that drive implementation
— Perhaps a few more to show absence of defects

— Not a comprehensive quality assurance technique

/v When Do | Stop?

AARHUS UNIVERSITET
« TDD of the Turn Handling in HotStone
— Test1: Given game, Findus is in turn Fake it
— Test2: Given game, end turn, Pedd. in turn Triangulation

» Exercise — Do | need?
— Test 3: Given game, 2x end turn, Findus in turn
— Test4: 3xendturn, Pedd in turn
— Test5: 4x endturn, Findus in turn
— Test17: 16x end turn, Findus in turn

 Exercise — Would it not be clever to do a test like
— N from 1..100, Nx end turn; N%2==0 then Findus in turn ?

S S S Y

/v When Do | Stop?

AARHUS UNIVERSITET

* Add test cases until the particular algorithm is complete
and correct and then stop!

TDD Principle: Representative Data

What data do you use for your tests? Select a small set of data where each element
represents a cc}nceptual aspect Oor a special computational pmcessjng.

* Overtesting is harmful

— Overtesting = same algorithmic production code is tested in
numerous different test cases

— Exercise: Why is that so, do you think?
» Hint: consider that functional requirement changes a bit...

/v Doing TDD

AARHUS UNIVERSITET
« Evident Tests — make tests easy to understand

@Test
public woid plainsEveryWhereButiZ Zandl 0Ando_11()

i
F/Iterate through all tilea in world

for{int row = GameConstants.WORLDSIZE-1l; row>=0 ; row--) [
for{int column = GameConstants.WORLDSIZE-1l; column >= 0 ; column——) |
if{'{row == 1 && column == 0 || row == 2 && column == 2 || row == 0 && column == 1)) |
aggsertEquals ("Thers should ke plains at " + row + "," + column,

ame.getTilelkt (new Position{row,coclumn)).getlypeString(), GameConstants.PFLAINSI) ;
}

}
1
!

« Exercise: What is focus here?
— Test that everything works? Or
— Drive production code into existence?

« And -is it Evident ?

eeeeeeeeeeeeeeee

VeV Stable Test cases

AARHUS UNIVERSITET

The more your testcases only use the given Game, Card,
Hand interfaces...

The more stable your test cases will be against
refactoring/changing inner data structures!

So

— game.getCardinHand(FINDUS, 1) ©
Never, ever things like

— ((Gamelmpl) game).internalHandArray[0][1] ®

Exercise: Why not?

/v Design Issues

AARHUS UNIVERSITET
» Which data structure should | use?
— Anyone you like | recommend, however, to
. Arrays Card][] avoid raw Java Arrays. Use
. Lists List<Card> the collection libraries.
* Maps Map<Player, Hero>

« As there ‘is two of everything’ you will likely combine

— List of arrays, or maps of lists, or arrays of lists, or array of arrays,
or ... Ala Map<Player, List<Card>>

 If using arrays, remember ‘ordinal()’ of an Enum

— Player.FINDUS.ordinal() == Do the same thing
the same way

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Mutation

Who has access to mutation?

Answer: Only Game, it handles the
rules of the game...

/v SideBar: For Python People

AARHUS UNIVERSITET
« Java is a type-safe language, meaning types are
checked

interface Card |

— Ifan object is of type ‘Card” in= g=sreaten0;
Only the methOdS ment|0ned class StandardCard implements Card |

int h;

in that type can be called int getHealth() { return h;]
vold setHealth({int +) { h = w; }
* If you call other methods; }
the compiler will refuse! Card ¢ = game.getCard...(...);
int h = c.getHealth{): /J/ OE
c.z3stHealth(7) ; /f WOT CE
® (Even |f the Undeﬂylng StandardCfard sc = game.getlard...{...);
. . in = sc.getHea ;Y
object really does implement 2% 2 - =c-getreaienq 7/ o

that method.)

f/ Casting...
StandardCard sc = (StandardCard) <; // may fail
sc.setHealth(7); Sl OR

CS@AU Henrik Baerbak Christensen 17

eV Those ‘read-only’ interfaces

AARHUS UNIVERSITET

| stated that try to keep Card, Hero as read only
interfaces

— That is, they only have accessor methods, no mutator methods
* Only ‘getX()’, never a ‘setX(int newValue)’

« Why?
— Actually it is the ‘Facade’ pattern which we will return to later, but
— Main point:
« game.getHero(Peddersen).addToHealth(1000);
* s not obeying the rules of the game and must be guarded against!
« How?
— (next slide, please)

/v Mutating Internal State

AARHUS UNIVERSITET
« Card and Hero should be read-only interfaces
 Then how can Game every change, say, hero mana left?

« Solution for now:
— A) Add mutators to the implementing classes
« StandardHero::reduceManaleft(int byValue)

— B) In Game either

« Declare by concrete type
— List<StandardHero> theHeros;

* Or, Use casts when needed
— StandardHero hero = (StandardHero) getHero(FINDUS);

. Why is this OK?

— Well — Game is responsible for mutations and know concrete type

Y Actually...

AARHUS UNIVERSITET

... We can find a better solution for this
— “Private interfaces”

* We will come back to this point later...

« SWEA is a course where it is good to know everything in
advance
— But that is not how learning works, right?

