
Software Engineering

and Architecture

A bit of Motivation and

some hints

Why TDD?

• “TDD seems very slow, I need to write all those tests

which takes a lot of time, instead of writing production

code?”

• Yeah… But – your productivity keeps nearly constant !

CS@AU Henrik Bærbak Christensen 2

Productivity = ‘Correct lines of code per hour’

Time

With tests

Without tests

Exercise

• You are employed in a company with little Automated

Test tradition… Manual tests…

• What happens here ? And what happens next?

CS@AU Henrik Bærbak Christensen 3

Productivity = ‘Correct lines of code per hour’

Time

Without testsYear 1 Year 2

When TDD?

• Do I always do TDD?

– No! Hacking together a quick Python script to compute SWEA

delivery deadlines, or other ‘one-time-tasks’, I just develop using

‘run-and-see-it-work’ (but I always ‘Take Small Steps’)

• The first running code is always “Hello my new script” printed!

• Testing and TDD is for larger systems with a longer time

period…

– Sometimes ‘one-time-prototypes’ become real systems

• WarStory:

– That quick-and-dirty prototype, that actually worked…

– Had to spend 14 days putting in tests to get productivity up again!

CS@AU Henrik Bærbak Christensen 4

Why Pair Programming?

• Why waste time on two people doing one person’s

coding?

• SWEA motivation

– Get everybody to the keyboard – training is vital

• XP motivation

– Knowledge sharing and mutual learning

– Keep quality high

CS@AU Henrik Bærbak Christensen 5

Mandatory Notes

Evident Tests

• The ‘GWT’ comments help a lot, I find…

– Last year TA’s wanted some guidance so I pulled out

‘TestAlphaStone’

which I wrote in February

CS@AU Henrik Bærbak Christensen 7

Incorrect Assumptions

• Producing code means making mistakes, also in the test!

– Defects often arise when you have incorrect assumptions

• Step 1: Quickly Write a Test

– Given game with Dos, Cuatro in Findus’ hand

• And Dos is at index 0 in the hand

– When I play Dos, Then the field has 3 cards (Uno+Tres already there)

• Step 2: Run all tests to see the new one fail

– “But the error reported is some weird null pointer / index out of range

error?”

• 15 min later: Aah, Dos had already been played !!!

CS@AU Henrik Bærbak Christensen 8

Red Bar

Take Small Steps

• Small steps: Ensure your assumptions are correct

– Verify that the hand is actually Dos + Cuatro

• Helper methods to ‘dump complete game state’

– TestHelper.printGameState(game);

– Remove the ‘printing’ once your tests runs correctly!

CS@AU Henrik Bærbak Christensen 9

Provided in HotStone Code

What is TDD???

• Traditional tests = Quality Assurance Technique

– Success:

• Tests are constructed to catch defects

• TDD tests = Implementation Technique

– Success: test cases that drive implementation

– Perhaps a few more to show absence of defects

– Not a comprehensive quality assurance technique

When Do I Stop?

• TDD of the Turn Handling in HotStone

– Test 1: Given game, Findus is in turn Fake it

– Test 2: Given game, end turn, Pedd. in turn Triangulation

• Exercise – Do I need?

– Test 3: Given game, 2x end turn, Findus in turn ?

– Test 4: 3x end turn, Pedd in turn ?

– Test 5: 4x end turn, Findus in turn ?

– Test 17: 16x end turn, Findus in turn ?

• Exercise – Would it not be clever to do a test like

– N from 1..100, Nx end turn; N%2==0 then Findus in turn ?

CS@AU Henrik Bærbak Christensen 11

When Do I Stop?

• Add test cases until the particular algorithm is complete

and correct and then stop!

• Overtesting is harmful

– Overtesting = same algorithmic production code is tested in

numerous different test cases

– Exercise: Why is that so, do you think?

• Hint: consider that functional requirement changes a bit…

CS@AU Henrik Bærbak Christensen 12

Doing TDD

• Evident Tests – make tests easy to understand

• Exercise: What is focus here?

– Test that everything works? Or

– Drive production code into existence?

• And – is it Evident ?

Sorry – AlphaCiv example…

Stable Test cases

• The more your testcases only use the given Game, Card,

Hand interfaces…

• The more stable your test cases will be against

refactoring/changing inner data structures!

• So

– game.getCardInHand(FINDUS, 1) ☺

• Never, ever things like

– ((GameImpl) game).internalHandArray[0][1] 

• Exercise: Why not?

CS@AU Henrik Bærbak Christensen 14

Design Issues

• Which data structure should I use?

– Anyone you like

• Arrays Card[]

• Lists List<Card>

• Maps Map<Player, Hero>

• As there ‘is two of everything’ you will likely combine

– List of arrays, or maps of lists, or arrays of lists, or array of arrays,

or … Ala Map<Player, List<Card>>

• If using arrays, remember ‘ordinal()’ of an Enum

– Player.FINDUS.ordinal() == 0

CS@AU Henrik Bærbak Christensen 15

I recommend, however, to
avoid raw Java Arrays. Use

the collection libraries.

Do the same thing,
 the same way

Mutation

Who has access to mutation?

Answer: Only Game, it handles the

rules of the game…

SideBar: For Python People

• Java is a type-safe language, meaning types are

checked

– If an object is of type ‘Card’

only the methods mentioned

in that type can be called

• If you call other methods;

the compiler will refuse!

• (Even if the underlying

object really does implement

that method.)

CS@AU Henrik Bærbak Christensen 17

Those ‘read-only’ interfaces

• I stated that try to keep Card, Hero as read only

interfaces

– That is, they only have accessor methods, no mutator methods

• Only ‘getX()’, never a ‘setX(int newValue)’

• Why?

– Actually it is the ‘Facade’ pattern which we will return to later, but

– Main point:

• game.getHero(Peddersen).addToHealth(1000);

• is not obeying the rules of the game and must be guarded against!

• How?

– (next slide, please)

CS@AU Henrik Bærbak Christensen 18

Mutating Internal State

• Card and Hero should be read-only interfaces

• Then how can Game every change, say, hero mana left?

• Solution for now:

– A) Add mutators to the implementing classes

• StandardHero::reduceManaLeft(int byValue)

– B) In Game either

• Declare by concrete type

– List<StandardHero> theHeros;

• Or, Use casts when needed

– StandardHero hero = (StandardHero) getHero(FINDUS);

• Why is this OK?

– Well – Game is responsible for mutations and know concrete type
CS@AU Henrik Bærbak Christensen 19

Actually…

• … We can find a better solution for this

– “Private interfaces”

• We will come back to this point later…

• SWEA is a course where it is good to know everything in

advance

– But that is not how learning works, right?

CS@AU Henrik Bærbak Christensen 20

